A study of frequent itemset mining techniques
نویسندگان
چکیده
منابع مشابه
A Study of Differentially Private Frequent Itemset Mining
Frequent sets play an important role in many Data Mining tasks that try to search interesting patterns from databases, such as association rules, sequences, correlations, episodes, classifiers and clusters. FrequentItemsets Mining (FIM) is the most well-known techniques to extract knowledge from dataset. In this paper differential privacy aims to get means to increase the accuracy of queries fr...
متن کاملFrequent Itemset Mining of Multiple Database s
Oftenti mes we need to investigate m ore than one source of data to provide a solution to the proble m at hand. This data integration proble m has been investigated and largely solved for simple situations in traditional relational database m a n age me nt syste ms (RDBMSes). They typically provide a m e a ns for the user to join datasets together based on a co m mo n si mple attribute. Not all...
متن کاملFrequent Itemset Mining Using Rough-Sets
Frequent pattern mining is the process of finding a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set. It was proposed in the context of frequent itemsets and association rule mining. Frequent pattern mining is used to find inherent regularities in data. What products were often purchased together? Its applications include basket data analysis, cro...
متن کاملVideo Mining with Frequent Itemset Configurations
We present a method for mining frequently occurring objects and scenes from videos. Object candidates are detected by finding recurring spatial arrangements of affine covariant regions. Our mining method is based on the class of frequent itemset mining algorithms, which have proven their efficiency in other domains, but have not been applied to video mining before. In this work we show how to e...
متن کاملPrivBasis: Frequent Itemset Mining with Differential Privacy
The discovery of frequent itemsets can serve valuable economic and research purposes. Releasing discovered frequent itemsets, however, presents privacy challenges. In this paper, we study the problem of how to perform frequent itemset mining on transaction databases while satisfying differential privacy. We propose an approach, called PrivBasis, which leverages a novel notion called basis sets....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Engineering & Technology
سال: 2017
ISSN: 2227-524X
DOI: 10.14419/ijet.v6i4.8300